Corning ${ }^{\circledR}$ SMF-28e $+{ }^{\circledR}$ Optical Fiber Product Information

ColorPro ${ }^{\text {TM }}$ Identification Technology

SMF-28e+ fiber is also available in colored and ringmarked variants, variants, enabled by ColorPro ${ }^{\text {TM }}$ identification technology. Corning fibers with ColorPro ${ }^{\text {TM }}$ identification technology deliver better efficiency in cable manufacturing, simplify inventory management, and leverage an enhanced fiber product offering.

How to Order

Contact your sales representative, or call the Optical Fiber Customer Service Department Ph: 1-607-248-2000 (U.S./Can.) +44-1244-525-320 (Europe) Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity when ordering.

Built on Corning's solid foundation of quality and proven performance, Corning ${ }^{\oplus}$ SMF-28e+ ${ }^{\oplus}$ optical fiber is the most widely deployed fiber in the world. Optimized for access and metro networks and meeting the demand for high-speed connectivity, SMF-28e+ fiber is compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value* $(\mathrm{dB} / \mathrm{km})$
1310	≤ 0.35
$1383^{* *}$	≤ 0.35
1490	≤ 0.24
1550	≤ 0.20
1625	≤ 0.23

*Alternate attenuation offerings available upon request.
${ }^{* *}$ Attenuation values at this wavelength represent post-hydrogen aging performance.

Attenuation vs. Wavelength

Range (nm)	Ref. λ (nm)	Max. α Difference $(\mathrm{dB} / \mathrm{km})$
$1285-1330$	1310	0.03
$1525-1575$	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α.

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
16	1	1550	≤ 0.03
25	100	1310	≤ 0.03
25	100	1550	≤ 0.03
30	100	1625	≤ 0.03

*The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength $\left(\lambda_{c c}\right)$
$\lambda_{\text {cc }} \leq 1260 \mathrm{~nm}$
Mode Field Diameter

Wavelength (nm)	Mode Field Diameter $(\mu \mathrm{m})$
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion Wavelength (nm)	Dispersion Value $[\mathrm{ps} /(\mathrm{nm} \cdot \mathrm{km})]$
1550	≤ 18
1625	≤ 22

Zero Dispersion Wavelength $\left(\lambda_{0}\right): 1304 \mathrm{~nm} \leq \lambda_{0} \leq 1324 \mathrm{~nm}$ Zero Dispersion Slope $\left(\mathrm{S}_{0}\right): \leq 0.092 \mathrm{ps} /\left(\mathrm{nm}^{2} \cdot \mathrm{~km}\right)$

Polarization Mode Dispersion (PMD)

	Value (ps/Vkm)
PMD Link Design Value	$\leq 0.06^{*}$
Maximum Individual Fiber PMD	≤ 0.1

*Complies with ITU-T G.650-2 Appendix IV, ($m=20$, $Q=0.01 \%)$, August 2015.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as $P M D_{Q}$). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Dimensional Specifications

Glass Geometry		Coating Geometry	
Fiber Curl	$\geq 4.0 \mathrm{~m}$ radius of curvature	Coating Diameter	$242 \pm 5 \mu \mathrm{~m}$
Cladding Diameter	$125.0 \pm 0.7 \mu \mathrm{~m}$	Coating-Cladding Concentricity	< $12 \mu \mathrm{~m}$

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation $1310 \mathrm{~nm}, 1550 \mathrm{~nm}$, and 1625 nm $(\mathrm{~dB} / \mathrm{km})$
Temperature Dependence	$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{*}$	≤ 0.05
Temperature Humidity Cycling	$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ up to $98 \% \mathrm{RH}$	≤ 0.05
Water Immersion	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Heat Aging	$85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	≤ 0.05
Damp Heat	$85^{\circ} \mathrm{C}$ at $85 \% \mathrm{RH}$	≤ 0.05

Operating Temperature Range: $-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
*Reference temperature $=+23^{\circ} \mathrm{C}$

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress $\geq 100 \mathrm{kpsi}(0.69 \mathrm{GPa})$. Higher proof test levels are available.

Length

Fiber lengths available up to $50.4 \mathrm{~km} /$ spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	$8.2 \mu \mathrm{~m}$
Numerical Aperture	0.14
	NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction $\left(\mathrm{n}_{\text {eff }}\right)$	$1310 \mathrm{~nm}: 1.4674$
	$1550 \mathrm{~nm}: 1.4679$
Fatigue Resistance Parameter $\left(\mathrm{n}_{\mathrm{d}}\right)$	20
Coating Strip Force	Dry: $0.6 \mathrm{lbs} .(3 \mathrm{~N})$
	Wet, $14-$ day room temperature: $0.6 \mathrm{lbs} .(3 \mathrm{~N})$
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	$1310 \mathrm{~nm}:-77 \mathrm{~dB}$

