Corning® ClearCurve® OM2, OM3, and OM4 Optical Fibers

Product Information

Ultra-bendable and laser-optimized™, Corning® ClearCurve® multimode optical fibers deliver superior macrobending and bandwidth performance, ensured by the measurement of every kilometer sold. Built on Corning's reliability and award-winning quality, ClearCurve OM2, OM3, and OM4 fibers are designed to withstand tight bends and challenging cabling routes with substantially less signal loss than conventional multimode fiber.

Standards Compliance

	ClearCurve® OM4 fiber	ClearCurve® OM3 fiber	ClearCurve® OM2 fiber
IEC 60793-2-10	Type A1-OM4 fiber	Type A1-OM3 fiber	Type A1-OM2 fiber
TIA	492AAAD	492AAAC-B	492AAAB-A

Optical Specifications

Bandwidth

	(MHz•km)	(MHz•	km)
Corning optical fiber	850 nm	850 nm	1300 nm
ClearCurve® OM4 fiber	4700	3500	500
ClearCurve® OM3 fiber	2000	1500	500
ClearCurve® OM2 fiber	950	700	500

^{*}Ensured via minEMBc, per TIA/EIA 455-220A and IEC 60793-1-49, for high performance laser-based systems.

High Performance EMB*

ColorPro™ Identification Technology

ClearCurve OM2, OM3, and OM4 fibers are also available in colored and ringmarked variants, enabled by ColorPro™ identification technology.

Corning fibers with ColorPro™ identification technology deliver better efficiency in cable manufacturing, simplify inventory management, and leverage an enhanced product offering.

How to Order

Contact your sales

representative, or call the Optical Fiber Customer Service Department: Ph: 1-607-248-2000 (U.S./Can.) +44-1244-525-320 (Europe) Email: cofic@corning.com Please specify the fiber type, attenuation, and quantity when ordering.

Attenuation

Wavelength	Maximum Value	
(nm)	(dB/km)	
850	≤ 2.3	
1300	≤ 0.6	

No point discontinuity greater than 0.2 dB. Attenuation at 1380 nm does not exceed the attenuation at 1300 nm by more than 3.0 dB/km.

Macrobend Loss

Mandrel	Number		
Radius	of	Induced Atte	nuation (dB)
(mm)	Turns	850 nm	1300 nm
15	2	≤ 0.1	≤ 0.3
7.5	2	≤ 0.2	≤ 0.5

Overfilled Modal Bandwidth**

Numerical Aperture

0.200 ± 0.015

Dimensional Specifications

Glass Geometry

Core Diameter	50.0 ± 2.5 μm
Cladding Diameter	125.0 ± 1.0 μm
Core-Clad Concentricity	≤ 1.5 µm
Cladding Non-Circularity	≤ 1.0%
Core Non-Circularity	≤ 5%

Coating Geometry

Coating Diameter	242 ± 5 μm
Coating-Cladding Concentricity	< 12 μm

^{**}OFL BW, per TIA/EIA 455-204 and IEC 60793-1-41.

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 850 nm and 1300 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.10
Temperature Humidity Cycling	-10°C to +85°C and up to 98% RH	≤ 0.10
Water Immersion	23°C ± 2°C	≤ 0.20
Heat Aging	85°C ± 2°C	≤ 0.20
Damp Heat	85°C at 85% RH	≤ 0.20

Operating Temperature Range: -60° C to $+85^{\circ}$ C *Reference temperature = $+23^{\circ}$ C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 17.6 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Effective Group Index of Refraction (n_{eff})	850 nm: 1.482 1300 nm: 1.477
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.6 lbs. (2.7 N) Wet: 14 days in 23°C water soak: 0.6 lbs. (2.7 N)
Chromatic Dispersion Zero Dispersion Wavelength (λ_0) : Zero Dispersion Slope (S_0) :	1295 nm ≤ λ_0 ≤ 1315 nm ≤ 0.101 ps/(nm ² •km)
Spectral Attenuation (Typical Fiber)	3.0 (R) 2.5 (R) 2.5 (R) 2.0 (R) 2.0